5.3 - Organic Chemistry

Organic Compounds – refers to almost all				containing compounds. These	
		turally by organisms a			
Inorganic C	Compounds – refers	to compounds that do r	not contain		The
exceptions to this are,					
Carbon – ha	aselectr	ons in its valence shell	and forms	covalent l	onds. In almost
all organic co	ompounds, carbon a	toms are bound to		or other	
elements that	t are near carbon on	the periodic table \rightarrow _			Č
:	, and the		_•		••••
					•
Carbon can a	also bind to itself to	form long chains of ato	ms, such as those four	nd in	·
Because carb	oon forms	bonds, it for	ms very complex struc	ctures. No other eler	ment can match
		conds, it for			
Chemists hav	ve identified million	s of different organic co	ompounds and are syn	thesizing more ever	y day.
Many of thes	se new compounds a	re used in	an	d	and to
create new m	naterials for	re used in	and		
How can v	ve recognize an (organic compound	:	H	H CH
The formula	for an organic comp	ound must contain		. Hii	HH
Ex. CH ₄	CH ₃ CH ₂ OH	C ₆ H ₅ COOH	$C_8H_{10}N_4O_2$	$CH_3(CH_2)_nCH$	I_3
Notice that h	urdragan daga nat ag	ma first in the formula	The reason for this	a that mast augania	aamnaunda ara
	-	me first in the formula	s. The reason for this i	is that most organic	compounds are
110t		·			
There are son	me inorganic comp	ounds that contain carb	oon.		
Ex. CaC	CO_3 , Na_2CO_3	Al_4C_3 , SiC	CO, CO	O_2	
I					

Hydrocarbons

A hydrocarbon is an organic compound that contains only elements	and
. There are	of known hydrocarbons.

Just like when we used prefixes when naming covalent compounds, prefixes are used when naming hydrocarbons. The first four prefixes are different than what we have already used. There are patterns to hydrocarbons.

Prefixes
$$-1$$
 = meth, 2 = eth, 3 = prop, 4 = but, 5 = pent, 6 = hex, 7 = sept, 8 = oct | Suffix (ending) \rightarrow "-ane"

Finally we need to be able to determine the "carbon backbone" of the structure which is given to us in the name or formula.

Table 5.8 The First Five Hydrocarbons					
Name	Molecular Formula	Structural Formula	Shortened Structural Formula	Space-Filling Model	Common Uses
methane	CH ₄		CH ₄		Natural gas heaters
	C ₂ H ₆	ľ	CH₃CH₃	40	Manufacturing plastic
					• Camp fuel
	C ₄ H ₁₀				Hand-held lighters
					• Component of gasoline

Line structure:

Alcohol

An **alcohol** is one kind of organic compound that contains ______, and ______. Some examples are **methanol**, and **isopropyl** alcohol.

Methanol is a _____ that is very useful as a _____. A solvent is a liquid that can _____ other substances.

Ethanol is used in some beverages as well as some disinfectants. If consumed in large amounts, ethanol is ______, and in _____, and in ______

Isopropyl is commonly known as rubbing alcohol and is also ______.

All three examples of alcohols are highly ______.

Table 5.9 Some Common Alcohols					
Name	Molecular Formula	Structural Formula	Shortened Structural Formula	Space-Filling Model	Common Use
methanol	сн₃он	H H C C O O H I H	CH₃OH		Solvent
ethanol	С ₂ Н ₅ 0Н	H H I I H— C— C — O — H I I H H	CH₃CH₂OH		• Fuel
isopropyl alcohol	C3H70H	Ĥ	(сн _з) ₂ снон		• Sterilizer • Cleaner

PRACTICE: Draw the structural formula for the following hydrocarbons:

- 1. methane –
- 2. propane –
- 3. C₄H₁₀ -

4. CH₃CH₂CH₃ -

Name the following:

1. C₈H₁₈ -

2. $CH_3CH_2CH_2CH_3$ -

Carousel Questions:

1.

2.

3.

4.

5.